Discovering communities can promote the understanding of the structure, function and evolution in various systems. Overlapping community detection in poly-relational networks has gained much more interests in recent years, due to the fact that poly-relational networks and communities with pervasive overlap are prevalent in the real world. A plethora of methods detect communities from the poly-relational network by converting it to mono-relational networks first. Nevertheless, they commonly assume different relations are independent from each other, which is obviously unreal to real-life cases. In this paper, we attempt to relax this strong assumption by introducing a novel co-ranking framework, named MutuRank. It makes full use of the mutual influence between relations and actors to transform the poly-relational network to the mono-relational network. We then present a novel GMM-NK (Gaussian Mixture Model with Neighbor Knowledge) algorithm incorporating the impact from neighbors into the traditional GMM. Experimental results both on synthetic networks and the real-world network have verified the effectiveness of MutuRank and GMM-NK.

Detecting overlapping communities in poly-relational networks

Cuzzocrea Alfredo;
2015

Abstract

Discovering communities can promote the understanding of the structure, function and evolution in various systems. Overlapping community detection in poly-relational networks has gained much more interests in recent years, due to the fact that poly-relational networks and communities with pervasive overlap are prevalent in the real world. A plethora of methods detect communities from the poly-relational network by converting it to mono-relational networks first. Nevertheless, they commonly assume different relations are independent from each other, which is obviously unreal to real-life cases. In this paper, we attempt to relax this strong assumption by introducing a novel co-ranking framework, named MutuRank. It makes full use of the mutual influence between relations and actors to transform the poly-relational network to the mono-relational network. We then present a novel GMM-NK (Gaussian Mixture Model with Neighbor Knowledge) algorithm incorporating the impact from neighbors into the traditional GMM. Experimental results both on synthetic networks and the real-world network have verified the effectiveness of MutuRank and GMM-NK.
Community detection
Gaussian mixture model
MutuRank
Poly-relational networks
Social networks
Computer Networks and Communications
Hardware and Architecture
Software
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/312625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact