Several studies reported that genetic variants predisposing to neurodegeneration were at higher frequencies in centenarians than in younger controls, suggesting they might favor also longevity. IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol poly- and pyrophosphates and by acting non-enzymatically via protein-protein interactions. Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and longevity, respectively. Here, in the same sample groups, we investigated whether variants of IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP interaction analysis, including our previous data, highlighted phenotype-specific interactions between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed variants suggested mitochondria as crossroad of interconnected pathways crucial for susceptibility to neurodegeneration and/or longevity. Overall, data support the view that in these traits interactions may be more important than single polymorphisms. This phenomenon may contribute to the non-additive heritability of neurodegeneration and longevity and be part of the missing heritability of these traits.

IP6K3 and IPMK variations in LOAD and longevity: evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival

Dato, Serena;Crocco, Paolina;De Rango, Francesco;Iannone, Francesca;Rose, Giuseppina;Passarino, Giuseppe
2021-01-01

Abstract

Several studies reported that genetic variants predisposing to neurodegeneration were at higher frequencies in centenarians than in younger controls, suggesting they might favor also longevity. IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol poly- and pyrophosphates and by acting non-enzymatically via protein-protein interactions. Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and longevity, respectively. Here, in the same sample groups, we investigated whether variants of IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP interaction analysis, including our previous data, highlighted phenotype-specific interactions between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed variants suggested mitochondria as crossroad of interconnected pathways crucial for susceptibility to neurodegeneration and/or longevity. Overall, data support the view that in these traits interactions may be more important than single polymorphisms. This phenomenon may contribute to the non-additive heritability of neurodegeneration and longevity and be part of the missing heritability of these traits.
2021
Aging
Alzheimer
IP6K3
IPMK
SNP-SNP interaction
longevity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/313364
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact