In this work, we show the application of a systematic general experimental analysis to estimate in a relatively easy way the paired effects of concentration polarization and inhibition in the hydrogen permeation through diverse supported Pd-based membranes as functions of temperature and mixture composition. For this purpose, three different membranes are fabricated and tested under pure‑hydrogen and binary-mixture of H2-N2 and H2-CO. The former mixture is used to quantify the concentration polarization influence only, whereas the latter is used to quantify the overall combined effect of polarization and inhibition. Manipulating the two effects, we finally obtain the influence of inhibition only. As main results, a maximum overall permeation reduction of around 35%, 55% and 45% is evaluated for Mem#1, for Mem#2, for Mem#3, respectively. Moreover, a maximum concentration polarization coefficient of around 2.5%, 19% and 12% and a maximum inhibition coefficient of 32%, 45% and 40% are respectively evaluated. These values state the importance of having a tool able to take into account these detrimental phenomena in designing ultra-thin-membrane equipment, remarking that the same approach can be applied to other types of metal membranes as well.

Systematic experimental assessment of concentration polarization and inhibition in Pd-based membranes for hydrogen purification

Caravella A.
Project Administration
2021-01-01

Abstract

In this work, we show the application of a systematic general experimental analysis to estimate in a relatively easy way the paired effects of concentration polarization and inhibition in the hydrogen permeation through diverse supported Pd-based membranes as functions of temperature and mixture composition. For this purpose, three different membranes are fabricated and tested under pure‑hydrogen and binary-mixture of H2-N2 and H2-CO. The former mixture is used to quantify the concentration polarization influence only, whereas the latter is used to quantify the overall combined effect of polarization and inhibition. Manipulating the two effects, we finally obtain the influence of inhibition only. As main results, a maximum overall permeation reduction of around 35%, 55% and 45% is evaluated for Mem#1, for Mem#2, for Mem#3, respectively. Moreover, a maximum concentration polarization coefficient of around 2.5%, 19% and 12% and a maximum inhibition coefficient of 32%, 45% and 40% are respectively evaluated. These values state the importance of having a tool able to take into account these detrimental phenomena in designing ultra-thin-membrane equipment, remarking that the same approach can be applied to other types of metal membranes as well.
2021
Concentration polarization
Electroless plating
Gas separation
Hydrogen
Inhibition by CO
Palladium metal membranes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/313382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact