Burnishing is considered a super finishing process able to drastically increase surface quality in terms of hardness and roughness of the manufactured parts. Consequently, it is considered appealing for the performance enhancement of products where the surface quality plays a crucial role. However, when burnishing grade 5 titanium alloy, a quantitative relationship between process parameters and surface integrity is still missing. This work provides a deep analysis of the burnishing parameters and their influence on the surface integrity of Ti-6Al-4V. In particular, starting from a large experimental campaign, statistical analysis of the results is performed and models able to describe the surface integrity response based on different burnishing parameters are presented. The overall results allow us to clearly define the relationship within the input and output variables identifying, by the proposed models, different operational windows for surface integrity improvement.
Prediction of surface integrity parameters in roller burnishing of ti6al4v
Rotella G.;Caruso S.;Filice L.
2020-01-01
Abstract
Burnishing is considered a super finishing process able to drastically increase surface quality in terms of hardness and roughness of the manufactured parts. Consequently, it is considered appealing for the performance enhancement of products where the surface quality plays a crucial role. However, when burnishing grade 5 titanium alloy, a quantitative relationship between process parameters and surface integrity is still missing. This work provides a deep analysis of the burnishing parameters and their influence on the surface integrity of Ti-6Al-4V. In particular, starting from a large experimental campaign, statistical analysis of the results is performed and models able to describe the surface integrity response based on different burnishing parameters are presented. The overall results allow us to clearly define the relationship within the input and output variables identifying, by the proposed models, different operational windows for surface integrity improvement.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.