Background: Mesenchymal stem cells (MSCs) may provide a novel clinical approach for acute kidney injury (AKI), which represents a severe health care condition. The human omentum is an important source of MSCs. We investigated the effects of human omental mesenchymal stem cells (HO-MSCs) after induction of ischemic AKI in a rat model. Methods: The ischemic-reperfusion injury (IRI) was induced at reperfusion following a 45-minute clamping of renal vessels. Twenty animals were used in this study. Each rat was randomly assigned to 1 of 2 groups: G1 (control, n = 10; IRI infusion of phosphate buffer solution) or G2 (HO-MSCs, n = 10; IRI infusion of HO-MSCs). The infusions were performed in the parenchyma at reperfusion. Renal function at 1, 3, 5, and 7 days was assessed. At sacrifice, histologic samples were analyzed by light, and renal injury was graded. Results: HO-MSCs induced an accelerated renal exocrine functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys as compared with control groups (P < .05). The renal damage degree was significantly less in the animals of the HO-MSC group (P < .0001). Conclusions: These results suggest that HO-MSCs could be useful in the treatment of AKI in a rat model with possible potential implication in clinical setting.
Acute Kidney Ischemic Injury in a Rat Model Treated by Human Omental Mesenchymal Stem Cells
Bonofiglio R.;Catalano S.;Nardo B.
2020-01-01
Abstract
Background: Mesenchymal stem cells (MSCs) may provide a novel clinical approach for acute kidney injury (AKI), which represents a severe health care condition. The human omentum is an important source of MSCs. We investigated the effects of human omental mesenchymal stem cells (HO-MSCs) after induction of ischemic AKI in a rat model. Methods: The ischemic-reperfusion injury (IRI) was induced at reperfusion following a 45-minute clamping of renal vessels. Twenty animals were used in this study. Each rat was randomly assigned to 1 of 2 groups: G1 (control, n = 10; IRI infusion of phosphate buffer solution) or G2 (HO-MSCs, n = 10; IRI infusion of HO-MSCs). The infusions were performed in the parenchyma at reperfusion. Renal function at 1, 3, 5, and 7 days was assessed. At sacrifice, histologic samples were analyzed by light, and renal injury was graded. Results: HO-MSCs induced an accelerated renal exocrine functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys as compared with control groups (P < .05). The renal damage degree was significantly less in the animals of the HO-MSC group (P < .0001). Conclusions: These results suggest that HO-MSCs could be useful in the treatment of AKI in a rat model with possible potential implication in clinical setting.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.