Background: Mesenchymal stem cells (MSCs) may provide a novel clinical approach for acute kidney injury (AKI), which represents a severe health care condition. The human omentum is an important source of MSCs. We investigated the effects of human omental mesenchymal stem cells (HO-MSCs) after induction of ischemic AKI in a rat model. Methods: The ischemic-reperfusion injury (IRI) was induced at reperfusion following a 45-minute clamping of renal vessels. Twenty animals were used in this study. Each rat was randomly assigned to 1 of 2 groups: G1 (control, n = 10; IRI infusion of phosphate buffer solution) or G2 (HO-MSCs, n = 10; IRI infusion of HO-MSCs). The infusions were performed in the parenchyma at reperfusion. Renal function at 1, 3, 5, and 7 days was assessed. At sacrifice, histologic samples were analyzed by light, and renal injury was graded. Results: HO-MSCs induced an accelerated renal exocrine functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys as compared with control groups (P < .05). The renal damage degree was significantly less in the animals of the HO-MSC group (P < .0001). Conclusions: These results suggest that HO-MSCs could be useful in the treatment of AKI in a rat model with possible potential implication in clinical setting.

Acute Kidney Ischemic Injury in a Rat Model Treated by Human Omental Mesenchymal Stem Cells

Bonofiglio R.;Catalano S.;Nardo B.
2020-01-01

Abstract

Background: Mesenchymal stem cells (MSCs) may provide a novel clinical approach for acute kidney injury (AKI), which represents a severe health care condition. The human omentum is an important source of MSCs. We investigated the effects of human omental mesenchymal stem cells (HO-MSCs) after induction of ischemic AKI in a rat model. Methods: The ischemic-reperfusion injury (IRI) was induced at reperfusion following a 45-minute clamping of renal vessels. Twenty animals were used in this study. Each rat was randomly assigned to 1 of 2 groups: G1 (control, n = 10; IRI infusion of phosphate buffer solution) or G2 (HO-MSCs, n = 10; IRI infusion of HO-MSCs). The infusions were performed in the parenchyma at reperfusion. Renal function at 1, 3, 5, and 7 days was assessed. At sacrifice, histologic samples were analyzed by light, and renal injury was graded. Results: HO-MSCs induced an accelerated renal exocrine functional recovery, demonstrated by biochemical parameters and confirmed by histology showing that histopathological alterations associated with ischemic injury were less severe in cell-treated kidneys as compared with control groups (P < .05). The renal damage degree was significantly less in the animals of the HO-MSC group (P < .0001). Conclusions: These results suggest that HO-MSCs could be useful in the treatment of AKI in a rat model with possible potential implication in clinical setting.
2020
Acute Kidney Injury
Animals
Disease Models, Animal
Humans
Male
Mesenchymal Stem Cell Transplantation
Mesenchymal Stem Cells
Omentum
Rats
Rats, Sprague-Dawley
Recovery of Function
Reperfusion Injury
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/318135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact