Groundwater management or remediation requires the knowledge of the main hydrodynamic parameters of the hydrological system. The aim of the study focused on the investigation of the reliability of the methods used for the estimation of these important parameters. Several pumping and slug tests were performed in the Hydraulics Laboratory of University of Calabria, where a high controlled experimental apparatus was designed and constructed. The data collected during the experiments have been used to estimate the hydraulic conductivity and the storage coefficient of the porous medium. The analysis was carried out both through classical analytical methods and by the development of an ad hoc three-dimensional finite element model of the apparatus working in transient conditions. An extreme variability in the results was observed but the estimates obtained by the inverse numerical modelling were the ones returning, on average, the best outcomes among all the characterisation methods.

Assessing the effectiveness of analytical and numerical inverse modelling approach for slug tests interpretation

Chidichimo, Francesco
Membro del Collaboration Group
;
De Biase, Michele;Fallico, Carmine
Membro del Collaboration Group
;
De Bartolo, Samuele
Membro del Collaboration Group
;
Ianchello, Mario
Membro del Collaboration Group
;
Straface, Salvatore
Membro del Collaboration Group
2021-01-01

Abstract

Groundwater management or remediation requires the knowledge of the main hydrodynamic parameters of the hydrological system. The aim of the study focused on the investigation of the reliability of the methods used for the estimation of these important parameters. Several pumping and slug tests were performed in the Hydraulics Laboratory of University of Calabria, where a high controlled experimental apparatus was designed and constructed. The data collected during the experiments have been used to estimate the hydraulic conductivity and the storage coefficient of the porous medium. The analysis was carried out both through classical analytical methods and by the development of an ad hoc three-dimensional finite element model of the apparatus working in transient conditions. An extreme variability in the results was observed but the estimates obtained by the inverse numerical modelling were the ones returning, on average, the best outcomes among all the characterisation methods.
2021
slug tests interpretation
analytical solutions
numerical inverse modelling
groundwater
laboratory experiments
hydrodynamic properties
hydraulic conductivity estimation;
storage coefficient estimation
characterisation techniques
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/322274
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact