Four different types of multi-walled carbon nanotubes (MWCNTs) were used and compared for the treatment of benzoic acid contaminated water. The types of nanotubes used were: (1) non-purified (CNTsUP), as made; (2) purified (CNTsP), not containing the catalyst; (3) oxidized (CNTsOX), characterized by the presence of groups such as, –COOH; (4) calcined (CNTs900), with elimination of interactions between nanotubes. In addition, activated carbon was also used to allow for later comparison. The adsorption tests were conducted on an aqueous solution of benzoic acid at concentration of 20 mg/L, as a model of carboxylated aromatic compounds. After the adsorption tests, the residual benzoic acid concentrations were measured by UV-visible spectrometry, while the carbon nanotubes were characterized by TG and DTA thermal analyses and electron microscopy (SEM). The results show that the type of nanotubes thermally treated at 900 °C has the best performances in terms of adsorption rate and amounts of collected acid, even if compared with the performance of activated carbons.

The role of carbon nanotube pretreatments in the adsorption of benzoic acid

Pierantonio De Luca
;
Carlo Siciliano;Anastasia Macario;
2021-01-01

Abstract

Four different types of multi-walled carbon nanotubes (MWCNTs) were used and compared for the treatment of benzoic acid contaminated water. The types of nanotubes used were: (1) non-purified (CNTsUP), as made; (2) purified (CNTsP), not containing the catalyst; (3) oxidized (CNTsOX), characterized by the presence of groups such as, –COOH; (4) calcined (CNTs900), with elimination of interactions between nanotubes. In addition, activated carbon was also used to allow for later comparison. The adsorption tests were conducted on an aqueous solution of benzoic acid at concentration of 20 mg/L, as a model of carboxylated aromatic compounds. After the adsorption tests, the residual benzoic acid concentrations were measured by UV-visible spectrometry, while the carbon nanotubes were characterized by TG and DTA thermal analyses and electron microscopy (SEM). The results show that the type of nanotubes thermally treated at 900 °C has the best performances in terms of adsorption rate and amounts of collected acid, even if compared with the performance of activated carbons.
2021
benzoic acid; carbon nanotubes; functionalization; active carbons; adsorption
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/322652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact