Inhibiting the main protease 3CLpro is the most common strategy in the search for antiviral drugs to fight the infection from SARS-CoV-2. We report that the natural compound eugenol is able to hamper in vitro the enzymatic activity of 3CLpro, the SARS-CoV-2 main protease, with an inhibition constant in the sub-micromolar range (Ki = 0.81 µM). Two phenylpropene analogs were also tested: the same effect was observed for estragole with a lower potency (Ki = 4.1 µM), whereas anethole was less active. The binding efficiency index of these compounds is remarkably favorable due also to their small molecular mass (MW < 165 Da). We envision that nanomolar inhibition of 3CLpro is widely accessible within the chemical space of simple natural compounds.
Sub-micromolar inhibition of sars-cov-2 3clpro by natural compounds
Grande F.;Conforti F.;
2021-01-01
Abstract
Inhibiting the main protease 3CLpro is the most common strategy in the search for antiviral drugs to fight the infection from SARS-CoV-2. We report that the natural compound eugenol is able to hamper in vitro the enzymatic activity of 3CLpro, the SARS-CoV-2 main protease, with an inhibition constant in the sub-micromolar range (Ki = 0.81 µM). Two phenylpropene analogs were also tested: the same effect was observed for estragole with a lower potency (Ki = 4.1 µM), whereas anethole was less active. The binding efficiency index of these compounds is remarkably favorable due also to their small molecular mass (MW < 165 Da). We envision that nanomolar inhibition of 3CLpro is widely accessible within the chemical space of simple natural compounds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.