Extracellular vesicles (EVs) are emerging key protagonists in intercellular communication between adipocytes and breast cancer (BC) cells. Here, we described a new mechanism by which EVs released by mature adipocytes promoted breast cancer cell malignancy “in vitro” and "in vivo". We found that adipocyte-derived EVs enhanced growth, motility and invasion, stem cell-like properties, as well as specific traits of epithelial-to-mesenchymal transition in both estrogen receptor positive and triple negative BC cells. Of note, adipocyte-derived EVs aid breast tumor cells in lung metastatic colonization after tail-vein injection in mice. These EV-mediated effects occur via the induction of HIF-1α activity, since they were abrogated by the use of the HIF-1α inhibitor KC7F2 or in cells silenced for HIF-1α expression. Moreover, using an “ex vivo” model of obese adipocytes we found that the depletion of EVs counteracted the ability of obese adipocytes to sustain pro-invasive phenotype in BC cells. Interestingly, EVs released by undifferentiated adipocytes failed to induce aggressiveness and HIF-1α expression. These findings shed new light on the role of adipocyte-derived EVs in breast cancer progression, suggesting the possibility to target HIF-1α activity to block the harmful adipocyte-tumor cell dialogue, especially in obese settings.

Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity

La Camera G.;Gelsomino L.;Malivindi R.;Barone I.;Panza S.;De Rose D.;Giordano F.;Bonofiglio D.;Giordano C.
;
Catalano S.
2021-01-01

Abstract

Extracellular vesicles (EVs) are emerging key protagonists in intercellular communication between adipocytes and breast cancer (BC) cells. Here, we described a new mechanism by which EVs released by mature adipocytes promoted breast cancer cell malignancy “in vitro” and "in vivo". We found that adipocyte-derived EVs enhanced growth, motility and invasion, stem cell-like properties, as well as specific traits of epithelial-to-mesenchymal transition in both estrogen receptor positive and triple negative BC cells. Of note, adipocyte-derived EVs aid breast tumor cells in lung metastatic colonization after tail-vein injection in mice. These EV-mediated effects occur via the induction of HIF-1α activity, since they were abrogated by the use of the HIF-1α inhibitor KC7F2 or in cells silenced for HIF-1α expression. Moreover, using an “ex vivo” model of obese adipocytes we found that the depletion of EVs counteracted the ability of obese adipocytes to sustain pro-invasive phenotype in BC cells. Interestingly, EVs released by undifferentiated adipocytes failed to induce aggressiveness and HIF-1α expression. These findings shed new light on the role of adipocyte-derived EVs in breast cancer progression, suggesting the possibility to target HIF-1α activity to block the harmful adipocyte-tumor cell dialogue, especially in obese settings.
2021
Adipocytes
Breast cancer
Extracellular vesicles
HIF-1α
Obesity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/325108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact