DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.

In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type

Pacenza M.
Membro del Collaboration Group
;
Muto A.
Methodology
;
Chiappetta A.
Membro del Collaboration Group
;
Talarico E.
Methodology
;
Bruno L.
Writing – Original Draft Preparation
;
Bitonti M. B.
Writing – Review & Editing
2021

Abstract

DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.
Arabidopsis Proteins
Base Sequence
Cadmium
Cytokinins
DNA Methylation
DNA, Plant
DNA-Cytosine Methylases
Gene Expression Regulation, Plant
Genes, Plant
Methyltransferases
Mutation
Plant Growth Regulators
Plant Roots
RNA, Messenger
RNA, Plant
Soil Pollutants
Stress, Physiological
Transcriptome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/326530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact