Rewinding machines are used in the paper converting industrial sector to unroll paper veils from large source reels and wind them around smaller rolls, for the production of paper logs to be used in household activities. Many different types of rewinding machine exist, and they are mostly based on stapling devices which automatically unroll a large coil of paper, roll it up around a new log, stop the veil allowing it to be torn off, unload the completed paper log, and reload a new paper core to be rolled up. Winding units generally include a primary and a secondary roller, supplying the desired rotational speed for winding, and a pressure unit consisting of a pressure roller in contact with the paper log being rolled up, which assures adequate containment and avoids the paper log to escape. All known systems have some mechanical limitations, mainly due to the contact of the pressure roller with the paper log, causing instabilities and vibrations, particularly when working with soft paper veils. This limits the maximum possible winding speed. The aim of this paper is it to present a detailed kinematic analysis of a novel pressure unit which overcomes the aforementioned limitation.

Kinematic Analysis of a Novel System for Paper Rewinding Machines

Gatti G.
;
2021-01-01

Abstract

Rewinding machines are used in the paper converting industrial sector to unroll paper veils from large source reels and wind them around smaller rolls, for the production of paper logs to be used in household activities. Many different types of rewinding machine exist, and they are mostly based on stapling devices which automatically unroll a large coil of paper, roll it up around a new log, stop the veil allowing it to be torn off, unload the completed paper log, and reload a new paper core to be rolled up. Winding units generally include a primary and a secondary roller, supplying the desired rotational speed for winding, and a pressure unit consisting of a pressure roller in contact with the paper log being rolled up, which assures adequate containment and avoids the paper log to escape. All known systems have some mechanical limitations, mainly due to the contact of the pressure roller with the paper log, causing instabilities and vibrations, particularly when working with soft paper veils. This limits the maximum possible winding speed. The aim of this paper is it to present a detailed kinematic analysis of a novel pressure unit which overcomes the aforementioned limitation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/326668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact