The aim of the work is the analysis of a novel integrated energy system for small-scale combined heat and power (CHP) generation. The system consists of a topping biodiesel-fired internal combustion engine (ICE) and a bottoming transcritical organic Rankine cycle (TORC) for waste-heat recovery. Specifically, the engine exhaust gas provides energy to the TORC sub-system, while the energy contribution of the ICE cooling circuit assures low-temperature heat generation. Furthermore, a thermal energy storage (TES) unit for the exploitation of the thermal surplus and an auxiliary boiler are present. A mathematical model is developed to evaluate the main performances at full and partial load in terms of thermal and electric production, efficiency, fuel consumption, and primary energy saving. A preliminary analysis is carried out to find the proper organic working fluid for the TORC sub-system. Afterwards, the biodiesel ICE-TORC combined system is adopted to satisfy thermal and electric requests of a commercial centre. To this purpose, hourly energy balances are evaluated, and a techno-economic analysis is performed on an annual basis. The investigated system guarantees a 16.7% primary energy saving and an 8.4 years payback time.

Integration of biodiesel internal combustion engines and transcritical organic Rankine cycles for waste-heat recovery in small-scale applications

Falbo L.;Perrone D.;Morrone P.;Algieri A.
2022-01-01

Abstract

The aim of the work is the analysis of a novel integrated energy system for small-scale combined heat and power (CHP) generation. The system consists of a topping biodiesel-fired internal combustion engine (ICE) and a bottoming transcritical organic Rankine cycle (TORC) for waste-heat recovery. Specifically, the engine exhaust gas provides energy to the TORC sub-system, while the energy contribution of the ICE cooling circuit assures low-temperature heat generation. Furthermore, a thermal energy storage (TES) unit for the exploitation of the thermal surplus and an auxiliary boiler are present. A mathematical model is developed to evaluate the main performances at full and partial load in terms of thermal and electric production, efficiency, fuel consumption, and primary energy saving. A preliminary analysis is carried out to find the proper organic working fluid for the TORC sub-system. Afterwards, the biodiesel ICE-TORC combined system is adopted to satisfy thermal and electric requests of a commercial centre. To this purpose, hourly energy balances are evaluated, and a techno-economic analysis is performed on an annual basis. The investigated system guarantees a 16.7% primary energy saving and an 8.4 years payback time.
2022
biodiesel
integrated energy system
internal combustion engine
organic Rankine cycle
renewable energy
sustainability
transcritical
waste recovery
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/326910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 9
social impact