The article discusses a robotic system based on a 6-DOF relative manipulation device consisting of two modules. The lower module is based on a parallel planar 3-RPR mechanism, and the upper module is based on a parallel 3-RPS tripod module. Such robotic system can be used in mechanical engineering as a robot-machine for the mechanical processing of parts. The mathematical model was built in the MATLAB package to analyze the prospects for using a 3-RPS robot. An alternative description of the rotation of the robot’s mobile platform is proposed to organize a simpler control of it within the framework of a system of interacting robots. A technique has been developed to compensate for the movable tripod platform’s horizontal displacements and take into account the geometric dimensions of the replaceable tool and the relative positions of the 6-DOF system modules during the control process. The results of the mathematical simulation are presented.

Motion Control of 6-DOF Relative Manipulation Device

Carbone G.
2021-01-01

Abstract

The article discusses a robotic system based on a 6-DOF relative manipulation device consisting of two modules. The lower module is based on a parallel planar 3-RPR mechanism, and the upper module is based on a parallel 3-RPS tripod module. Such robotic system can be used in mechanical engineering as a robot-machine for the mechanical processing of parts. The mathematical model was built in the MATLAB package to analyze the prospects for using a 3-RPS robot. An alternative description of the rotation of the robot’s mobile platform is proposed to organize a simpler control of it within the framework of a system of interacting robots. A technique has been developed to compensate for the movable tripod platform’s horizontal displacements and take into account the geometric dimensions of the replaceable tool and the relative positions of the 6-DOF system modules during the control process. The results of the mathematical simulation are presented.
2021
978-3-030-75270-5
978-3-030-75271-2
3-RPS mechanism
6-DOF robotic system
Parallel robot control
Parallel robot model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact