In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov-Serrin and a careful choice of the cutoff functions, we deduce symmetry and monotonicity properties of the solutions.

The Moving Plane Method for Doubly Singular Elliptic Equations Involving a First-Order Term

Esposito F.
;
Sciunzi B.
2021-01-01

Abstract

In this paper we deal with positive singular solutions to semilinear elliptic problems involving a first-order term and a singular nonlinearity. Exploiting a fine adaptation of the well-known moving plane method of Alexandrov-Serrin and a careful choice of the cutoff functions, we deduce symmetry and monotonicity properties of the solutions.
2021
First-Order Term
Qualitative Properties
Semilinear Elliptic Equations
Singular Nonlinearity
Singular Solutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327427
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact