A simple and low-cost procedure for gel-like time-durable biological phantoms is presented in this work. Easily accessible materials are adopted, which are able to provide a flexible and controllable method to rapidly realize different kind of tissues. The proposed technique is applied to fabricate various tissue-mimicking phantoms, namely skin, muscle, blood and fat. Their effectiveness is first tested by performing dielectric characterization on a wide frequency range, from 500 MHz up to 5 GHz, and validating the measured dielectric parameters (dielectric constant and conductivity) by comparison with reference models in the literature. Then, a multi-layer phantom simulating the human arm is realized, and a wearable body sensor is adopted to prove the perfect agreement of the biometric response achieved in the presence of the fabricated phantom and that provided by a real human arm.

Gel-like human mimicking phantoms: Realization procedure, dielectric characterization and experimental validations on microwave wearable body sensors

Costanzo S.
;
Cioffi V.;Qureshi A. M.;Borgia A.
2021-01-01

Abstract

A simple and low-cost procedure for gel-like time-durable biological phantoms is presented in this work. Easily accessible materials are adopted, which are able to provide a flexible and controllable method to rapidly realize different kind of tissues. The proposed technique is applied to fabricate various tissue-mimicking phantoms, namely skin, muscle, blood and fat. Their effectiveness is first tested by performing dielectric characterization on a wide frequency range, from 500 MHz up to 5 GHz, and validating the measured dielectric parameters (dielectric constant and conductivity) by comparison with reference models in the literature. Then, a multi-layer phantom simulating the human arm is realized, and a wearable body sensor is adopted to prove the perfect agreement of the biometric response achieved in the presence of the fabricated phantom and that provided by a real human arm.
2021
Biological phantoms
Biosensors
Security
Wearable devices
Biomimetics
Electric Conductivity
Humans
Microwaves
Phantoms, Imaging
Skin
Water
Biosensing Techniques
Wearable Electronic Devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/327976
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact