Abstract: Methanation reaction of carbon dioxide is currently envisaged as a facile solution for the storage and transportation of low-grade energies, contributing at the same time to the mitigation of CO2 emissions. In this work, a nickel catalyst impregnated onto a new support, Engelhard Titanium Silicates (ETS), is proposed, and its catalytic performance was tested toward the CO2 methanation reaction. Two types of ETS material were investigated, ETS-4 and ETS-10, that differ from each other in the titanium content, with Si/Ti around 2 and 3% by weight, respectively. Catalysts, loaded with 5% of nickel, were tested in the CO2 methanation reaction in the temperature range of 300–500 ◦C and were characterized by XRD, SEM–EDX, N2 adsorption–desorption and H2 -TPR. Results showed an interesting catalytic activity of the Ni/ETS catalysts. Particularly, the best catalytic performances are showed by Ni/ETS-10: 68% CO2 conversion and 98% CH4 selectivity at T = 400 ◦C. The comparison of catalytic performance of Ni/ETS-10 with those obtained by other Ni-zeolites catalysts confirms that Ni/ETS-10 catalyst is a promising one for the CO2 methanation reaction.

Investigation on the suitability of engelhard titanium silicate as a support for ni-catalysts in the methanation reaction

Pierantonio De Luca;Anastasia Macario
2021-01-01

Abstract

Abstract: Methanation reaction of carbon dioxide is currently envisaged as a facile solution for the storage and transportation of low-grade energies, contributing at the same time to the mitigation of CO2 emissions. In this work, a nickel catalyst impregnated onto a new support, Engelhard Titanium Silicates (ETS), is proposed, and its catalytic performance was tested toward the CO2 methanation reaction. Two types of ETS material were investigated, ETS-4 and ETS-10, that differ from each other in the titanium content, with Si/Ti around 2 and 3% by weight, respectively. Catalysts, loaded with 5% of nickel, were tested in the CO2 methanation reaction in the temperature range of 300–500 ◦C and were characterized by XRD, SEM–EDX, N2 adsorption–desorption and H2 -TPR. Results showed an interesting catalytic activity of the Ni/ETS catalysts. Particularly, the best catalytic performances are showed by Ni/ETS-10: 68% CO2 conversion and 98% CH4 selectivity at T = 400 ◦C. The comparison of catalytic performance of Ni/ETS-10 with those obtained by other Ni-zeolites catalysts confirms that Ni/ETS-10 catalyst is a promising one for the CO2 methanation reaction.
2021
methanation; carbon dioxide; nickel; titanium silicate
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/328041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact