: Chronic social isolation generates a persistent state of stress associated with obesity along with some neuro-endocrine disorders and central behavioral sequelae (eg anxiety, depression, aggression, and allodynia). In this study, we evaluated the effect of social isolation on body weight, depressive- and anxious-aggressive-like behavior, as well as on phenotypic changes of adipocytes from visceral adipose tissue of control (group-housed) or socially isolated (single-housed) male mice. The effect of treatment with pentadecyl-2-oxazoline (PEA-OXA), a natural alpha2 antagonist and histamine H3 protean partial agonist, on these alterations was also evaluated. Single or group-housed mice treated with vehicle or PEA-OXA underwent body weight, mechanical allodynia, anxious-, depressive- and aggressive-like behavior measurements. Proliferation rate, apoptosis, senescence, expression of fat lineage genes, lipid droples and proinflammatory cytokines were measured on white adipose tissue adipocytes from group- or single-housed mice. Single housed mice developed weight gain, mechanical allodynia at the von Frey test, aggressiveness in the resident intruder test, depression- and anxiety-like behavior in the tail suspension and hole drop tests, respectively. Single housed mice receiving PEA-OXA showed a general resolution of both, physical-metabolic and behavioral alterations associated with social isolation. Furthermore, adipocytes from the adipose tissue of socially isolated mice showed an evident inflamed phenotype (i.e. a reduced rate of proliferation, apoptosis, senescence, and ROS hyper-production together with an increased expression of IL-1β, IL-10, IL-17, and TNF-α and a decrease of IL-6). The treatment with PEA-OXA on adipocytes from single housed mice produced a protective/anti-inflammatory phenotype with an increased expression of brown adipose tissue biomarker. This study confirms that persistent stress caused by social isolation predisposes to obesity and neuropsychiatric disorders. PEA-OXA, through its multi-target activity on alpha2 adrenoceptor and histamine H3 receptors, which have recently aroused great interest in the neuropsychiatric field, reduces weight gain, systemic pro-inflammatory state, allodynia, and affective disorders associated with social isolation.
PEA-OXA ameliorates allodynia, neuropsychiatric and adipose tissue remodeling induced by social isolation
Bagetta G.;
2022-01-01
Abstract
: Chronic social isolation generates a persistent state of stress associated with obesity along with some neuro-endocrine disorders and central behavioral sequelae (eg anxiety, depression, aggression, and allodynia). In this study, we evaluated the effect of social isolation on body weight, depressive- and anxious-aggressive-like behavior, as well as on phenotypic changes of adipocytes from visceral adipose tissue of control (group-housed) or socially isolated (single-housed) male mice. The effect of treatment with pentadecyl-2-oxazoline (PEA-OXA), a natural alpha2 antagonist and histamine H3 protean partial agonist, on these alterations was also evaluated. Single or group-housed mice treated with vehicle or PEA-OXA underwent body weight, mechanical allodynia, anxious-, depressive- and aggressive-like behavior measurements. Proliferation rate, apoptosis, senescence, expression of fat lineage genes, lipid droples and proinflammatory cytokines were measured on white adipose tissue adipocytes from group- or single-housed mice. Single housed mice developed weight gain, mechanical allodynia at the von Frey test, aggressiveness in the resident intruder test, depression- and anxiety-like behavior in the tail suspension and hole drop tests, respectively. Single housed mice receiving PEA-OXA showed a general resolution of both, physical-metabolic and behavioral alterations associated with social isolation. Furthermore, adipocytes from the adipose tissue of socially isolated mice showed an evident inflamed phenotype (i.e. a reduced rate of proliferation, apoptosis, senescence, and ROS hyper-production together with an increased expression of IL-1β, IL-10, IL-17, and TNF-α and a decrease of IL-6). The treatment with PEA-OXA on adipocytes from single housed mice produced a protective/anti-inflammatory phenotype with an increased expression of brown adipose tissue biomarker. This study confirms that persistent stress caused by social isolation predisposes to obesity and neuropsychiatric disorders. PEA-OXA, through its multi-target activity on alpha2 adrenoceptor and histamine H3 receptors, which have recently aroused great interest in the neuropsychiatric field, reduces weight gain, systemic pro-inflammatory state, allodynia, and affective disorders associated with social isolation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.