Occupancy modeling in office buildings is still in progress and needs to be developed by using observable data. In this paper, an office building under the Mediterranean climate was instrumental in the collection of both indoor environmental parameters (air temperature and relative humidity, CO2, VOC) and user action-related variables (electricity power, window, door state, and air conditioning use). Each parameter was monitored along with the occupancy state at a one-minute time step for two years. The purpose of the investigation was to evaluate the potential application of three straightforward models, such as the Law of Total Probability (LTP), Naïve Bayes classifier (NB), and Classification and Regression Tree (CART), to estimate the occupancy state using the indoor measurements. Thirty-four (34) different combinations of parameters were applied on the developed models; the true positive rate (TPR), true negative rate (TNR), and accuracy were used as evaluation metrics. The results confirmed that the performances of the models were influenced by both the number and the typology of the used parameters. In particular, the CART model was found to be the least affected by them; almost half of the parameters’ combinations provided accuracies higher than 93% and TNR higher than TPR. Accuracies of the order of 90% were obtained with NB and LTP.

Assessment of probabilistic models to estimate the occupancy state in office buildings using indoor parameters and user-related variables

Fajilla, Gianmarco;De Simone, Marilena
2021-01-01

Abstract

Occupancy modeling in office buildings is still in progress and needs to be developed by using observable data. In this paper, an office building under the Mediterranean climate was instrumental in the collection of both indoor environmental parameters (air temperature and relative humidity, CO2, VOC) and user action-related variables (electricity power, window, door state, and air conditioning use). Each parameter was monitored along with the occupancy state at a one-minute time step for two years. The purpose of the investigation was to evaluate the potential application of three straightforward models, such as the Law of Total Probability (LTP), Naïve Bayes classifier (NB), and Classification and Regression Tree (CART), to estimate the occupancy state using the indoor measurements. Thirty-four (34) different combinations of parameters were applied on the developed models; the true positive rate (TPR), true negative rate (TNR), and accuracy were used as evaluation metrics. The results confirmed that the performances of the models were influenced by both the number and the typology of the used parameters. In particular, the CART model was found to be the least affected by them; almost half of the parameters’ combinations provided accuracies higher than 93% and TNR higher than TPR. Accuracies of the order of 90% were obtained with NB and LTP.
2021
Occupancy detection, Probabilistic models, Office buildings, Sensor fusion, CART, Naïve Bayes model, The Law of Total Probability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/330050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact