Human serum albumin binds a wide variety of drugs with different structure and affinity to two main binding sites, drug site 1 (DS1) and drug site 2 (DS2), which partially or totally overlap with fatty acid (FA) sites. Although multiple binding sites are available for endogenous compounds, FAs are the primary physiological ligands of albumin and their competition in the occupancy of DS1 and DS2 affects the binding of exogenous molecules, with a possible impact on drug delivery. In this work, we have investigated the simultaneous binding of oleic acid, warfarin and ibuprofen to albumin using differential scanning calorimetry and fluorescence to evaluate the impact on the conformational stability of the protein. The two drugs are widely used for their anticoagulant (warfarin) and anti-inflammatory (ibuprofen) properties, and can be also considered as site markers to probe DS1 and DS2, respectively. Oleic acid is one of the most important fatty acids from a physiological point of view for its role as a source of energy for cells, and also it binds albumin with the highest association constant. When complexed with oleic acid the calorimetric profile of albumin shows a biphasic trend whose line shape depends on the ligand concentration. The binding capacity of either warfarin or ibuprofen to albumin is modulated by oleate molecules in a concentration-dependent mode being synergic cooperative (warfarin) or competitive-like (ibuprofen). The overall results provide insights on the dynamics of albumin/ligands complex, which in turn may have important pharmacokinetic and pharmacodynamic implications.

Interactive multiple binding of oleic acid, warfarin and ibuprofen with human serum albumin revealed by thermal and fluorescence studies

Guzzi R.;Bartucci R.
2022-01-01

Abstract

Human serum albumin binds a wide variety of drugs with different structure and affinity to two main binding sites, drug site 1 (DS1) and drug site 2 (DS2), which partially or totally overlap with fatty acid (FA) sites. Although multiple binding sites are available for endogenous compounds, FAs are the primary physiological ligands of albumin and their competition in the occupancy of DS1 and DS2 affects the binding of exogenous molecules, with a possible impact on drug delivery. In this work, we have investigated the simultaneous binding of oleic acid, warfarin and ibuprofen to albumin using differential scanning calorimetry and fluorescence to evaluate the impact on the conformational stability of the protein. The two drugs are widely used for their anticoagulant (warfarin) and anti-inflammatory (ibuprofen) properties, and can be also considered as site markers to probe DS1 and DS2, respectively. Oleic acid is one of the most important fatty acids from a physiological point of view for its role as a source of energy for cells, and also it binds albumin with the highest association constant. When complexed with oleic acid the calorimetric profile of albumin shows a biphasic trend whose line shape depends on the ligand concentration. The binding capacity of either warfarin or ibuprofen to albumin is modulated by oleate molecules in a concentration-dependent mode being synergic cooperative (warfarin) or competitive-like (ibuprofen). The overall results provide insights on the dynamics of albumin/ligands complex, which in turn may have important pharmacokinetic and pharmacodynamic implications.
2022
Differential scanning calorimetry
Fluorescence
Human serum albumin
Ibuprofen
Oleic acid
Warfarin
Binding Sites
Humans
Oleic Acid
Protein Binding
Serum Albumin, Human
Ibuprofen
Warfarin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/330315
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact