Nutrition plastically modulates the epigenetic landscape in various tissues of an organism during life via epigenetic changes. In the present study, to clarify whether this modulation involves RNA methylation, we evaluated global RNA methylation profiles and the expression of writer, reader, and eraser genes, encoding for enzymes involved in the RNA methylation. The study was carried out in the heart, liver, and kidney samples from rats of different ages in response to a low-calorie diet. We found that, although each tissue showed peculiar RNA methylation levels, a general increase in these levels was observed throughout the lifespan as well as in response to the six-month diet. Similarly, a prominent remodeling of the expression of writer, reader, and eraser genes emerged. Our data provide a comprehensive overview of the role exerted by diet on the tissue-specific epigenetic plasticity of RNA according to aging in rats, providing the first evidence that methylation of RNA, similarly to DNA methylation, can represent an effective biomarker of aging. What is more, the fact that it is regulated by nutrition provides the basis for the development of targeted approaches capable of guaranteeing the maintenance of a state of good health.

Impact of Nutrition on Age-Related Epigenetic RNA Modifications in Rats

D’Aquila Patrizia;De Rango Francesco;Paparazzo Ersilia;Mandalà Maurizio;Bellizzi Dina
;
Passarino Giuseppe
2022-01-01

Abstract

Nutrition plastically modulates the epigenetic landscape in various tissues of an organism during life via epigenetic changes. In the present study, to clarify whether this modulation involves RNA methylation, we evaluated global RNA methylation profiles and the expression of writer, reader, and eraser genes, encoding for enzymes involved in the RNA methylation. The study was carried out in the heart, liver, and kidney samples from rats of different ages in response to a low-calorie diet. We found that, although each tissue showed peculiar RNA methylation levels, a general increase in these levels was observed throughout the lifespan as well as in response to the six-month diet. Similarly, a prominent remodeling of the expression of writer, reader, and eraser genes emerged. Our data provide a comprehensive overview of the role exerted by diet on the tissue-specific epigenetic plasticity of RNA according to aging in rats, providing the first evidence that methylation of RNA, similarly to DNA methylation, can represent an effective biomarker of aging. What is more, the fact that it is regulated by nutrition provides the basis for the development of targeted approaches capable of guaranteeing the maintenance of a state of good health.
2022
aging; tissue-specificity, RNA methylation, low-calorie diet, nutrition, writer, eraser and reader enzymes, biomarkers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/330593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact