Larval urodeles are provided with external gills involved, along with the skin, in gas exchange and osmoregulation. Gills and skin epithelia are different, each showing a peculiar set of specialized cells but both provided with Leydig cells (LCs). Information on LCs in the gills is lacking as the literature has focused primarily on the epidermis. Contradictory and fragmentary results highlight that LCs origin, fate, and functions remain not fully understood. Here, we investigated the morpho-functional differences of LCs in the skin and gills of Lissotriton italicus larvae for the first time. LCs showed the same morphological and ultrastructural features in both tissues, even if LCs were significantly larger in the epidermis. Despite the uniform morphology within the LCs population, the proliferative ability was different. The putative diversity in the mucus composition was evaluated using a panel of 4 lectins as markers of specific carbohydrate moieties, revealing that sites of specific glycoconjugates were comparable in two tissues. To disclose the involvement of LCs in water storage and transport, immunofluorescence assay for aquaporin-3 has also been performed, demonstrating the expression of this protein only in gills epithelium. By demonstrating that LCs can multiply by cell division in gills, our results will also contribute to the discussion about their proliferative ability. Finally, we found that the LCs cytoplasm is rich in glycoconjugates, which are involved in many diverse and essential functions in vertebrates.

The differential role of Leydig cells in the skin and gills of Lissotriton italicus larvae

Brunelli E.
;
Macirella R.;Curcio V.;D'Aniello B.;
2022-01-01

Abstract

Larval urodeles are provided with external gills involved, along with the skin, in gas exchange and osmoregulation. Gills and skin epithelia are different, each showing a peculiar set of specialized cells but both provided with Leydig cells (LCs). Information on LCs in the gills is lacking as the literature has focused primarily on the epidermis. Contradictory and fragmentary results highlight that LCs origin, fate, and functions remain not fully understood. Here, we investigated the morpho-functional differences of LCs in the skin and gills of Lissotriton italicus larvae for the first time. LCs showed the same morphological and ultrastructural features in both tissues, even if LCs were significantly larger in the epidermis. Despite the uniform morphology within the LCs population, the proliferative ability was different. The putative diversity in the mucus composition was evaluated using a panel of 4 lectins as markers of specific carbohydrate moieties, revealing that sites of specific glycoconjugates were comparable in two tissues. To disclose the involvement of LCs in water storage and transport, immunofluorescence assay for aquaporin-3 has also been performed, demonstrating the expression of this protein only in gills epithelium. By demonstrating that LCs can multiply by cell division in gills, our results will also contribute to the discussion about their proliferative ability. Finally, we found that the LCs cytoplasm is rich in glycoconjugates, which are involved in many diverse and essential functions in vertebrates.
2022
Leydig cells
Newts
aquaporin
respiratory epithelia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/330669
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact