In machine learning, hyperparameter tuning is strongly useful to improve model performance. In our research, we concentrate our attention on classifying imbalanced data by cost-sensitive support vector machines. We propose a multi-objective approach that optimizes model’s hyper-parameters. The approach is devised for imbalanced data. Three SVM model’s performance measures are optimized. We present the algorithm in a basic version based on genetic algorithms, and as an improved version based on genetic algorithms combined with decision trees. We tested the basic and the improved approach on benchmark datasets either as serial and parallel version. The improved version strongly reduces the computational time needed for finding optimized hyper-parameters. The results empirically show that suitable evaluation measures should be used in assessing the classification performance of classification models with imbalanced data.

A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers

Guido R.;Groccia M. C.;Conforti D.
2022-01-01

Abstract

In machine learning, hyperparameter tuning is strongly useful to improve model performance. In our research, we concentrate our attention on classifying imbalanced data by cost-sensitive support vector machines. We propose a multi-objective approach that optimizes model’s hyper-parameters. The approach is devised for imbalanced data. Three SVM model’s performance measures are optimized. We present the algorithm in a basic version based on genetic algorithms, and as an improved version based on genetic algorithms combined with decision trees. We tested the basic and the improved approach on benchmark datasets either as serial and parallel version. The improved version strongly reduces the computational time needed for finding optimized hyper-parameters. The results empirically show that suitable evaluation measures should be used in assessing the classification performance of classification models with imbalanced data.
Genetic algorithms
Hyper-parameter optimization
Imbalanced datasets
Multi-objective optimization
Support vector machine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/331155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact