Knowledge of spring waters’ chemical composition is paramount for both their use and their conservation. Vast surveys at the basin scale are required to define the nature and the location of the springs and to identify the hydrochemical facies of their aquifers. The present study aims to evaluate the hydrochemical facies and the vulnerability to nitrates of 59 springs falling in the Sila Massif in Calabria (southern Italy) and to identify their vulnerability through the analysis of physicochemical parameters and the use of the Langelier–Ludwig diagram. A spatial analysis was performed by the spline method. The results identified a mean value of 4.39 mg NO3− /L and a maximum value of 24 mg NO3− /L for nitrate pollution in the study area. Statistical analysis results showed that the increase in electrical conductivity follows the increase in alkalinity values, a correlation especially evident in the bicarbonate Ca-Mg waters and linked to the possibility of higher nitrate concentrations in springs. These analyses also showed that nitrate vulnerability is dependent on the geological setting of springs. Indeed, the Sila igneous–metamorphic batholith, often strongly affected by weathering processes, contributes to not buffering the nitrate impacts on aquifers. Conversely, anthropogenic activities, particularly fertilization practices, are key factors in groundwater vulnerability.

Vulnerability to Nitrate Occurrence in the Spring Waters of the Sila Massif (Calabria, Southern Italy)

Infusino E.;Guagliardi I.;Gaglioti S.;Caloiero T.
2022-01-01

Abstract

Knowledge of spring waters’ chemical composition is paramount for both their use and their conservation. Vast surveys at the basin scale are required to define the nature and the location of the springs and to identify the hydrochemical facies of their aquifers. The present study aims to evaluate the hydrochemical facies and the vulnerability to nitrates of 59 springs falling in the Sila Massif in Calabria (southern Italy) and to identify their vulnerability through the analysis of physicochemical parameters and the use of the Langelier–Ludwig diagram. A spatial analysis was performed by the spline method. The results identified a mean value of 4.39 mg NO3− /L and a maximum value of 24 mg NO3− /L for nitrate pollution in the study area. Statistical analysis results showed that the increase in electrical conductivity follows the increase in alkalinity values, a correlation especially evident in the bicarbonate Ca-Mg waters and linked to the possibility of higher nitrate concentrations in springs. These analyses also showed that nitrate vulnerability is dependent on the geological setting of springs. Indeed, the Sila igneous–metamorphic batholith, often strongly affected by weathering processes, contributes to not buffering the nitrate impacts on aquifers. Conversely, anthropogenic activities, particularly fertilization practices, are key factors in groundwater vulnerability.
2022
Correlation
Hydrogeochemical characterization
Nitrate vulnerability
Spring waters
Statistical analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/331589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact