The mechanism whereby an increase in neuronal activity (NA) leads to a local elevation in cerebral blood flow to supply the active neurons with oxygen and nutrients and remove the catabolic waste has been termed neurovascular coupling (NVC). Although it has long been thought that the vasoactive mediators involved in NVC are generated by neurons and astrocytes, recent evidence unveiled the crucial role of cerebrovascular endothelial cells in NVC. Brain capillary endothelial cells express a complement of ion channels, including inward-rectifier K+ (Kir2.1) channels, Transient Receptor Potential Ankyrin 1 channel and N-methyl-d-aspartate receptors that enable them to sense NA and thereby initiate the retrograde transmission of both electrical (via endothelium-dependent hyperpolarization) and chemical (via intercellular Ca2+ waves also sustained by TRP Vanilloid 4 channels and inositol-1,4,5-trisphosphate receptors) signals that induce vasodilation in upstream pial arteries and parenchymal arteries. Notably, a defect in the endothelial ion channel machinery (particularly, Kir2.1 channels) contributes to vascular cognitive impairment and dementia that features many cerebral disorders, including Alzheimer's disease, cerebral small vessel diseases, and traumatic brain injury. Targeting endothelial ion channels through appropriate pharmacological approaches might represent a hitherto unappreciated strategy to rescue CBF and prevent cognitive impairment and dementia in patients affected by cerebral disorders.

Targeting endothelial ion signalling to rescue cerebral blood flow in cerebral disorders

Angelone, Tommaso
2022-01-01

Abstract

The mechanism whereby an increase in neuronal activity (NA) leads to a local elevation in cerebral blood flow to supply the active neurons with oxygen and nutrients and remove the catabolic waste has been termed neurovascular coupling (NVC). Although it has long been thought that the vasoactive mediators involved in NVC are generated by neurons and astrocytes, recent evidence unveiled the crucial role of cerebrovascular endothelial cells in NVC. Brain capillary endothelial cells express a complement of ion channels, including inward-rectifier K+ (Kir2.1) channels, Transient Receptor Potential Ankyrin 1 channel and N-methyl-d-aspartate receptors that enable them to sense NA and thereby initiate the retrograde transmission of both electrical (via endothelium-dependent hyperpolarization) and chemical (via intercellular Ca2+ waves also sustained by TRP Vanilloid 4 channels and inositol-1,4,5-trisphosphate receptors) signals that induce vasodilation in upstream pial arteries and parenchymal arteries. Notably, a defect in the endothelial ion channel machinery (particularly, Kir2.1 channels) contributes to vascular cognitive impairment and dementia that features many cerebral disorders, including Alzheimer's disease, cerebral small vessel diseases, and traumatic brain injury. Targeting endothelial ion channels through appropriate pharmacological approaches might represent a hitherto unappreciated strategy to rescue CBF and prevent cognitive impairment and dementia in patients affected by cerebral disorders.
2022
Cerebral disorders
Cerebrovascular endothelial cells
InsP(3)Rs
K(ir)2.1 channels
NMDA receptors
Neurovascular coupling
TRPA1
TRPV4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/332964
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact