The refractive index and its variation with temperature, i.e. the thermo-optic coefficient, are basic optical parameters for all those semiconductors that are used in the fabrication of linear and non-linear opto-electronic devices and systems. Recently, 4H single-crystal silicon carbide (4H-SiC) and gallium nitride (GaN) have emerged as excellent building materials for high power and high-temperature electronics, and wide parallel applications in photonics can be consequently forecasted in the near future, in particular in the infrared telecommunication band of λ = 1500-1600 nm. In this paper, the thermo-optic coefficient (dn/dT) is experimentally measured in 4H-SiC and GaN substrates, from room temperature to 480 K, at the wavelength of 1550 nm. Specifically, the substrates, forming natural Fabry-Perot etalons, are exploited within a simple hybrid fiber free-space optical interferometric system to take accurate measurements of the transmitted optical power in the said temperature range. It is found that, for both semiconductors, dn/dT is itself remarkably temperature-dependent, in particular quadratically for GaN and almost linearly for 4H-SiC.

Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550 nm

Cocorullo, Giuseppe;Messina, Giacomo;Della Corte, Francesco G
2022-01-01

Abstract

The refractive index and its variation with temperature, i.e. the thermo-optic coefficient, are basic optical parameters for all those semiconductors that are used in the fabrication of linear and non-linear opto-electronic devices and systems. Recently, 4H single-crystal silicon carbide (4H-SiC) and gallium nitride (GaN) have emerged as excellent building materials for high power and high-temperature electronics, and wide parallel applications in photonics can be consequently forecasted in the near future, in particular in the infrared telecommunication band of λ = 1500-1600 nm. In this paper, the thermo-optic coefficient (dn/dT) is experimentally measured in 4H-SiC and GaN substrates, from room temperature to 480 K, at the wavelength of 1550 nm. Specifically, the substrates, forming natural Fabry-Perot etalons, are exploited within a simple hybrid fiber free-space optical interferometric system to take accurate measurements of the transmitted optical power in the said temperature range. It is found that, for both semiconductors, dn/dT is itself remarkably temperature-dependent, in particular quadratically for GaN and almost linearly for 4H-SiC.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/335241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact