Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.

Inhibition of the carnitine acylcarnitine carrier by carbon monoxide reveals a novel mechanism of action with non-metal-containing proteins

Tonazzi A.;Giangregorio N.;Console L.;Prejano M.;Scalise M.;Marino T.;Indiveri C.
2022-01-01

Abstract

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.
2022
Carbon monoxide
CORM-3
Cysteine
Mitochondria
SLC25A20
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/335900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact