Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.

Morphological and Functional Alterations Induced by Two Ecologically Relevant Concentrations of Lead on Danio rerio Gills

Curcio V.;Macirella R.;Sesti S.;Ahmed A. I. M.;Talarico F.;Tagarelli A.;Brunelli E.
2022-01-01

Abstract

Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.
2022
gills
lead
molecular biomarkers
morphological biomarkers
Water Pollutants, Chemical
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/337844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact