Cyclophosphamide is a well-known anticancer agent acting by means of DNA alkylation. Associated with its tumor selectivity, it also possesses a wide spectrum of toxicities. As the requirement of metabolic activation before cyclophosphamide exerts either its therapeutic or toxic effects is well recognized, research aiming at elucidating the pathways that lead to the activation of this drug is of key importance. This has created the necessity for developing an effective analytical method for detecting cyclophosphamide and its breakdown products. In this paper, an Acquity TQ tandem quadrupole mass spectrometer equipped with electrospray ionization in positive-ion mode was employed for detecting cyclophosphamide in its protonated form. The full-scan mass spectrum of cyclophosphamide shows two ion clusters displaying the characteristic isotopic pattern of two chlorine atoms and assigned as sodiated cyclophosphamide, [CP + Na]+, and protonated cyclophosphamide, [CP + H]+ or PCP. With the aid of quantum mechanical DFT calculation, free energy differences in the gas phase among PCP protomers were computed with respect to the most stable protomer being protonated on the 2-oxide oxygen of the 1,3,2-oxazaphosphorine-2-oxide ring. In addition, the interconversion mechanisms among the different protomers were also proposed by intercepting the corresponding transition states in the gas phase. Collision-induced dissociation (CID) of PCP generated six characteristic product ions. Fragmentation mechanisms were proposed and supported by computation. The calculated energy barriers for all of the located transition states were found to be accessible under the reported experimental conditions.

Analysis of the Fragmentation Pathways for the Collision-Induced Dissociation of Protonated Cyclophosphamide: A Mass Spectrometry and Quantum Mechanical Study

Ritacco, Ida;Dabbish, Eslam;Sicilia, Emilia;
2022

Abstract

Cyclophosphamide is a well-known anticancer agent acting by means of DNA alkylation. Associated with its tumor selectivity, it also possesses a wide spectrum of toxicities. As the requirement of metabolic activation before cyclophosphamide exerts either its therapeutic or toxic effects is well recognized, research aiming at elucidating the pathways that lead to the activation of this drug is of key importance. This has created the necessity for developing an effective analytical method for detecting cyclophosphamide and its breakdown products. In this paper, an Acquity TQ tandem quadrupole mass spectrometer equipped with electrospray ionization in positive-ion mode was employed for detecting cyclophosphamide in its protonated form. The full-scan mass spectrum of cyclophosphamide shows two ion clusters displaying the characteristic isotopic pattern of two chlorine atoms and assigned as sodiated cyclophosphamide, [CP + Na]+, and protonated cyclophosphamide, [CP + H]+ or PCP. With the aid of quantum mechanical DFT calculation, free energy differences in the gas phase among PCP protomers were computed with respect to the most stable protomer being protonated on the 2-oxide oxygen of the 1,3,2-oxazaphosphorine-2-oxide ring. In addition, the interconversion mechanisms among the different protomers were also proposed by intercepting the corresponding transition states in the gas phase. Collision-induced dissociation (CID) of PCP generated six characteristic product ions. Fragmentation mechanisms were proposed and supported by computation. The calculated energy barriers for all of the located transition states were found to be accessible under the reported experimental conditions.
Chlorine
Cyclophosphamide
DNA
Ions
Oxides
Oxygen
Protein Subunits
Antineoplastic Agents
Spectrometry, Mass, Electrospray Ionization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/338334
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact