For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.

Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies

Lorena Pochini
;
Michele Galluccio
2022-01-01

Abstract

For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
2022
SLC transporter
expression
yeast
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/339023
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact