Mixed assumed stress finite elements (FEs) have shown good advantages over traditional displacement-based formulations in various contexts. However, their use in incremental elasto-plasticity is limited by the need for return mapping schemes which preserve the assumed stress interpolation. For elastic-perfectly plastic materials and small deformation problems, the integration of the constitutive equation furnishes a closest point projection (CPP) involving all the element stress parameters. In this work, a dual decomposition strategy is adopted to split this problem into a series of CPPs at the integration points level and in a nonlinear system of equations over the element, in order to simplify its solution. The strategy is tested with a four nodes mixed shell FE, named MISS-4, characterized by an equilibrated stress interpolation which improves the accuracy. Two decomposition strategies are tested to express the plastic admissibility either in terms of stress resultants or point-wise Cauchy stresses. The recovered elasto-plastic solution preserves all the advantages of MISS-4, namely it is accurate for coarse meshes in recovering the equilibrium path and evaluating the limit load showing a quadratic rate of convergence, as demonstrated by the numerical results.

A dual decomposition of the closest point projection in incremental elasto-plasticity using a mixed shell finite element

Liguori F. S.
Software
;
Madeo A.
Membro del Collaboration Group
;
Garcea G.
Conceptualization
2022-01-01

Abstract

Mixed assumed stress finite elements (FEs) have shown good advantages over traditional displacement-based formulations in various contexts. However, their use in incremental elasto-plasticity is limited by the need for return mapping schemes which preserve the assumed stress interpolation. For elastic-perfectly plastic materials and small deformation problems, the integration of the constitutive equation furnishes a closest point projection (CPP) involving all the element stress parameters. In this work, a dual decomposition strategy is adopted to split this problem into a series of CPPs at the integration points level and in a nonlinear system of equations over the element, in order to simplify its solution. The strategy is tested with a four nodes mixed shell FE, named MISS-4, characterized by an equilibrated stress interpolation which improves the accuracy. Two decomposition strategies are tested to express the plastic admissibility either in terms of stress resultants or point-wise Cauchy stresses. The recovered elasto-plastic solution preserves all the advantages of MISS-4, namely it is accurate for coarse meshes in recovering the equilibrium path and evaluating the limit load showing a quadratic rate of convergence, as demonstrated by the numerical results.
2022
dual decomposition strategy
elasto-plastic analysis
equilibrated assumed stresses
mixed finite element
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/339328
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact