Answer Set Programming (ASP) is a well-established declarative AI formalism for knowledge representation and reasoning. ASP systems were successfully applied to both industrial and academic problems. Nonetheless, their performance can be improved by embedding domain-specific heuristics into their solving process. However, the development of domain-specific heuristics often requires both a deep knowledge of the domain at hand and a good understanding of the fundamental working principles of the ASP solvers. In this paper, we investigate the use of deep learning techniques to automatically generate domain-specific heuristics for ASP solvers targeting the well-known graph coloring problem. Empirical results show that the idea is promising: the performance of the ASP solver wasp can be improved.

Deep Learning for the Generation of Heuristics in Answer Set Programming: A Case Study of Graph Coloring

Dodaro Carmine;Ricca Francesco
2022

Abstract

Answer Set Programming (ASP) is a well-established declarative AI formalism for knowledge representation and reasoning. ASP systems were successfully applied to both industrial and academic problems. Nonetheless, their performance can be improved by embedding domain-specific heuristics into their solving process. However, the development of domain-specific heuristics often requires both a deep knowledge of the domain at hand and a good understanding of the fundamental working principles of the ASP solvers. In this paper, we investigate the use of deep learning techniques to automatically generate domain-specific heuristics for ASP solvers targeting the well-known graph coloring problem. Empirical results show that the idea is promising: the performance of the ASP solver wasp can be improved.
978-3-031-15706-6
978-3-031-15707-3
answer set programming
deep learning
graph coloring
heuristics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/339354
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact