The presence of different heavy metals such as arsenic in groundwater is evident and can be attributed to environmental processes and anthropogenic activities. Arsenic is considered one of the most toxic chemical elements in nature; therefore, many studies proposed valid processes for groundwater remediation. In this review, the primary arsenic sources are explored. It also has provided an interesting discussion of how arsenic impurities can be removed from the groundwater using various processes while highlighting the advantages and disadvantages of each of them. Particular attention has been focused on the membrane process. Nanofiltration applications at large scales are obstructed by the difficulty of As(III) removal (which is the most toxic As form) and fouling issues. Application of nanofiber membranes in arsenic remediation is also described: these membranes, characterized by high surface area, uniform pore-size distribution, and improved pore connectivity, exhibit excellent adsorption capacity. Although the research activities in this field have made progress, several problems need to be solved, such as improvement of the porosity and the size of the pores, and the mechanical strength for promoting their use in industrial operating conditions.
Arsenic removal from groundwater by membrane technology: Advantages, disadvantages, and effect on human health
Pugliese V.;Coppola G.;Curcio S.;Calabro V.;Chakraborty S.
2022-01-01
Abstract
The presence of different heavy metals such as arsenic in groundwater is evident and can be attributed to environmental processes and anthropogenic activities. Arsenic is considered one of the most toxic chemical elements in nature; therefore, many studies proposed valid processes for groundwater remediation. In this review, the primary arsenic sources are explored. It also has provided an interesting discussion of how arsenic impurities can be removed from the groundwater using various processes while highlighting the advantages and disadvantages of each of them. Particular attention has been focused on the membrane process. Nanofiltration applications at large scales are obstructed by the difficulty of As(III) removal (which is the most toxic As form) and fouling issues. Application of nanofiber membranes in arsenic remediation is also described: these membranes, characterized by high surface area, uniform pore-size distribution, and improved pore connectivity, exhibit excellent adsorption capacity. Although the research activities in this field have made progress, several problems need to be solved, such as improvement of the porosity and the size of the pores, and the mechanical strength for promoting their use in industrial operating conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.