In this paper, we introduce a new nonconforming finite element as a polynomial enrichment of the standard triangular linear element. Based on this new element, we propose an improvement of the triangular Shepard operator. We prove that the order of this new approximation operator is at least cubic. Numerical experiments demonstrate the accuracy of the proposed method.

On the improvement of the triangular Shepard method by non conformal polynomial elements

Dell'Accio F.;Di Tommaso F.;Nudo F.
2023-01-01

Abstract

In this paper, we introduce a new nonconforming finite element as a polynomial enrichment of the standard triangular linear element. Based on this new element, we propose an improvement of the triangular Shepard operator. We prove that the order of this new approximation operator is at least cubic. Numerical experiments demonstrate the accuracy of the proposed method.
2023
Enriched finite element method
Nonconforming finite element
Scattered data interpolation
Triangular Shepard method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/341748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact