: Contamination of aquatic environments by pharmaceuticals used by modern societies has become a serious threat to human beings. Among them, antibiotics are of particular concern due to the risk of creating drug-resistant bacteria and, thus, developing efficient protocols for the capture of this particular type of drug is mandatory. Herein, we report a family of three isoreticular MOFs, derived from natural amino acids, that exhibit high efficiency in the removal of a mixture of four distinct families of antibiotics, such as fluoroquinolones, penicillins, lincomycins, and cephalosporins, as solid-phase extraction (SPE) sorbents. In particular, a multivariate (MTV)-MOF, prepared using equal percentages of amino acids l-serine and l-methionine, also exhibits outstanding recyclability, surpassing the benchmark material activated carbon. The good removal performance of the MTV-MOF was rationalized by means of single-crystal X-ray diffraction. These results highlight the situation of MOFs as a real and promising alternative for the capture of antibiotics from environmental matrices, especially wastewater streams.

(Multivariate)-Metal-Organic Framework for Highly Efficient Antibiotic Capture from Aquatic Environmental Matrices

Iqbal, Waseem;Armentano, Donatella
;
2023-01-01

Abstract

: Contamination of aquatic environments by pharmaceuticals used by modern societies has become a serious threat to human beings. Among them, antibiotics are of particular concern due to the risk of creating drug-resistant bacteria and, thus, developing efficient protocols for the capture of this particular type of drug is mandatory. Herein, we report a family of three isoreticular MOFs, derived from natural amino acids, that exhibit high efficiency in the removal of a mixture of four distinct families of antibiotics, such as fluoroquinolones, penicillins, lincomycins, and cephalosporins, as solid-phase extraction (SPE) sorbents. In particular, a multivariate (MTV)-MOF, prepared using equal percentages of amino acids l-serine and l-methionine, also exhibits outstanding recyclability, surpassing the benchmark material activated carbon. The good removal performance of the MTV-MOF was rationalized by means of single-crystal X-ray diffraction. These results highlight the situation of MOFs as a real and promising alternative for the capture of antibiotics from environmental matrices, especially wastewater streams.
2023
Multivariate metal−organic framework
antibiotics
environmental matrices
solid-phase extraction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/343365
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact