Topological insulators in which the Fermi level is in the bulk gap and intersects only a topological surface state (the Dirac cone) are of special interest in the current research. In the last decades, a fine-tuning of the chemical composition of topological insulators has been carefully explored in order to control the Fermi level position with respect to the Dirac surface state. Taking the SnBi 2 Te 4 crystal as a case study, we provide a characterization of its electronic structure by means of angle-resolved photoemission spectroscopy and first-principles calculations. We show that, going away from the Brillouin zone center, bulk band states energetically overlap with the Dirac cone at the Fermi level, thus providing an unwanted as well as hidden contribution to the transport properties of the material. In addition, the comparison between experimental results of the band structure with state-of-the-art simulations, implemented taking into account the number of defects, leads to useful insights on the existing limits in the description of this material.

Energy-overlap of the Dirac surface state with bulk bands in SnBi2Te4

De Luca, O.
Membro del Collaboration Group
;
Caruso, T.
Membro del Collaboration Group
;
Papagno, M.
Membro del Collaboration Group
;
Agostino, R. G.
Membro del Collaboration Group
;
Pacilè, D.
Membro del Collaboration Group
2023-01-01

Abstract

Topological insulators in which the Fermi level is in the bulk gap and intersects only a topological surface state (the Dirac cone) are of special interest in the current research. In the last decades, a fine-tuning of the chemical composition of topological insulators has been carefully explored in order to control the Fermi level position with respect to the Dirac surface state. Taking the SnBi 2 Te 4 crystal as a case study, we provide a characterization of its electronic structure by means of angle-resolved photoemission spectroscopy and first-principles calculations. We show that, going away from the Brillouin zone center, bulk band states energetically overlap with the Dirac cone at the Fermi level, thus providing an unwanted as well as hidden contribution to the transport properties of the material. In addition, the comparison between experimental results of the band structure with state-of-the-art simulations, implemented taking into account the number of defects, leads to useful insights on the existing limits in the description of this material.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/343725
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact