Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.

Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests

Marrelli M.;Conforti F.;
2022-01-01

Abstract

Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.
2022
Apis mellifera
Foeniculum vulgare subsp. piperitum essential oils
fumigation toxicity
in vitro and semi-field tests
IPM (integrated pest management)
phytochemical profile
Varroa destructor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/345618
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact