According to the 6G vision, the evolution of wireless communication systems will soon lead to the possibility of supporting Tbps communications, as well as satisfying, individually or jointly, a plethora of other very stringent quality requirements related to latency, bitrate, and reliability. The achievement of these goals will naturally raise many research issues within radio communications. In this context, a promising 6G wireless communications enabler is the reconfigurable intelligent surface (RIS) hardware architecture, which has already been recognized as a game-changing way to turn any naturally passive wireless communication setting into an active one. This paper investigates RIS-aided multicast 6G communications by first modeling the system delay as a first-come-first-served (FCFS) M/D/1 queue and analyzing the behavior under different blockage conditions. Then the study of multi-beam operation scenarios, covering multicast and RIS-aided multicast communications, is conducted by leveraging an M/D/c queue model. Achieved results show that large-size RISs outperform even slightly obstructed direct BS-to-user paths. In contrast, RISs of smaller sizes require the design of sophisticated power control and sharing mechanisms to achieve better performance.

Modeling Reconfigurable Intelligent Surfaces-aided Directional Communications for Multicast Services

Pizzi S.;Molinaro A.;Iera A.;Araniti G.
2022-01-01

Abstract

According to the 6G vision, the evolution of wireless communication systems will soon lead to the possibility of supporting Tbps communications, as well as satisfying, individually or jointly, a plethora of other very stringent quality requirements related to latency, bitrate, and reliability. The achievement of these goals will naturally raise many research issues within radio communications. In this context, a promising 6G wireless communications enabler is the reconfigurable intelligent surface (RIS) hardware architecture, which has already been recognized as a game-changing way to turn any naturally passive wireless communication setting into an active one. This paper investigates RIS-aided multicast 6G communications by first modeling the system delay as a first-come-first-served (FCFS) M/D/1 queue and analyzing the behavior under different blockage conditions. Then the study of multi-beam operation scenarios, covering multicast and RIS-aided multicast communications, is conducted by leveraging an M/D/c queue model. Achieved results show that large-size RISs outperform even slightly obstructed direct BS-to-user paths. In contrast, RISs of smaller sizes require the design of sophisticated power control and sharing mechanisms to achieve better performance.
2022
978-1-6654-3540-6
6G
millimeter wave
multicast
queuing theory
reconfigurable intelligent surfaces
wireless communication
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/348380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact