In this paper we consider the problem of the approximation of definite integrals on finite intervals for integrand functions showing some kind of “pathological” behavior, e.g. “nearly” singular functions, highly oscillating functions, weakly singular functions, etc. In particular, we introduce and study a product rule based on equally spaced nodes and on the constrained mock-Chebyshev least squares operator. Like other polynomial or rational approximation methods, this operator was recently introduced in order to defeat the Runge phenomenon that occurs when using polynomial interpolation on large sets of equally spaced points. Unlike methods based on piecewise approximation functions, mainly used in the case of equally spaced nodes, our product rule offers a high efficiency, with performances slightly lower than those of global methods based on orthogonal polynomials in the same spaces of functions. We study the convergence of the product rule and provide error estimates in subspaces of continuous functions. We test the effectiveness of the formula by means of several examples, which confirm the theoretical estimates.

Product integration rules by the constrained mock-Chebyshev least squares operator

Francesco Dell’Accio
;
Federico Nudo;
2023-01-01

Abstract

In this paper we consider the problem of the approximation of definite integrals on finite intervals for integrand functions showing some kind of “pathological” behavior, e.g. “nearly” singular functions, highly oscillating functions, weakly singular functions, etc. In particular, we introduce and study a product rule based on equally spaced nodes and on the constrained mock-Chebyshev least squares operator. Like other polynomial or rational approximation methods, this operator was recently introduced in order to defeat the Runge phenomenon that occurs when using polynomial interpolation on large sets of equally spaced points. Unlike methods based on piecewise approximation functions, mainly used in the case of equally spaced nodes, our product rule offers a high efficiency, with performances slightly lower than those of global methods based on orthogonal polynomials in the same spaces of functions. We study the convergence of the product rule and provide error estimates in subspaces of continuous functions. We test the effectiveness of the formula by means of several examples, which confirm the theoretical estimates.
2023
Mock-Chebyshev interpolation · Equispaced nodes · Chebyshev nodes · Product integration rules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/348817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact