The anaerobic digestion (AD) of compost leachate has been scarcely investigated and, to the best of our knowledge, no previous work has analyzed the kinetics of the process in completely stirred tank reactors (CSTR). To overcome this lack of knowledge, the present work aimed to deepen the study of the AD of compost leachate in CSTR and to identify the kinetics that can represent the process evolution under different operating conditions. In this regard, an experimental investigation was carried out on a laboratory anaerobic pilot plant that worked in semi-continuous mode under mesophilic conditions. After the start-up phase, the digester was fed with organic loading rates (OLR) between 4 and 30 g(COD)/Ld. The chemical oxygen demand (COD) removal ranged between 80 and 85% for OLR values up to 20 g(COD)/Ld and, then, it was observed as 54% at 30 g(COD)/Ld. The deterioration of process performance was caused by an excessive generation of volatile fatty acids leading to a decrease of methane production yield from 0.32-0.36 L-CH4/g(CODremoved) at 20 g(COD)/Ld, to 0.23-0.26 L-CH4/g(CODremoved) at 30 g(COD)/Ld. Using kinetic analysis, the Monod model was shown to be quite accurate in modelling the trends of COD degradation rates for OLR values up to 20 g(COD)/Ld. On the other hand, a better fit was achieved with the Haldane model at 30 g(COD)/Ld. The conducted modelling allowed to identify the kinetic parameters for each model. The detected results could help in the management and design of the digesters for the treatment of compost leachate.
Kinetic Study of Anaerobic Digestion of Compost Leachate from Organic Fraction of Municipal Solid Waste
Limonti, C;Curcio, GM;Siciliano, A
;
2023-01-01
Abstract
The anaerobic digestion (AD) of compost leachate has been scarcely investigated and, to the best of our knowledge, no previous work has analyzed the kinetics of the process in completely stirred tank reactors (CSTR). To overcome this lack of knowledge, the present work aimed to deepen the study of the AD of compost leachate in CSTR and to identify the kinetics that can represent the process evolution under different operating conditions. In this regard, an experimental investigation was carried out on a laboratory anaerobic pilot plant that worked in semi-continuous mode under mesophilic conditions. After the start-up phase, the digester was fed with organic loading rates (OLR) between 4 and 30 g(COD)/Ld. The chemical oxygen demand (COD) removal ranged between 80 and 85% for OLR values up to 20 g(COD)/Ld and, then, it was observed as 54% at 30 g(COD)/Ld. The deterioration of process performance was caused by an excessive generation of volatile fatty acids leading to a decrease of methane production yield from 0.32-0.36 L-CH4/g(CODremoved) at 20 g(COD)/Ld, to 0.23-0.26 L-CH4/g(CODremoved) at 30 g(COD)/Ld. Using kinetic analysis, the Monod model was shown to be quite accurate in modelling the trends of COD degradation rates for OLR values up to 20 g(COD)/Ld. On the other hand, a better fit was achieved with the Haldane model at 30 g(COD)/Ld. The conducted modelling allowed to identify the kinetic parameters for each model. The detected results could help in the management and design of the digesters for the treatment of compost leachate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.