The production of dimethyl ether from renewables or waste is a promising strategy to push towards a sustainable energy transition of alternative eco-friendly diesel fuel. In this work, we simulate the synthesis of dimethyl ether from a syngas (a mixture of CO, CO2 and H-2) produced from gasification of digestate. In particular, a thermodynamic analysis was performed to individuate the best process conditions and syngas conditioning processes to maximize yield to dimethyl etehr (DME). Process simulation was carried out by ChemCAD software, and it was particularly focused on the effect of process conditions of both water gas shift and CO2 absorption by Selexol(R) on the syngas composition, with a direct influence on DME productivity. The final best flowsheet and the best process conditions were evaluated in terms of CO2 equivalent emissions. Results show direct DME synthesis global yield was higher without the WGS section and with a carbon capture equal to 85%. The final environmental impact was found equal to -113 kgCO(2)/GJ, demonstrating that DME synthesis from digestate may be considered as a suitable strategy for carbon dioxide recycling.

Process Simulation and Environmental Aspects of Dimethyl Ether Production from Digestate-Derived Syngas

Catizzone, Enrico;
2021-01-01

Abstract

The production of dimethyl ether from renewables or waste is a promising strategy to push towards a sustainable energy transition of alternative eco-friendly diesel fuel. In this work, we simulate the synthesis of dimethyl ether from a syngas (a mixture of CO, CO2 and H-2) produced from gasification of digestate. In particular, a thermodynamic analysis was performed to individuate the best process conditions and syngas conditioning processes to maximize yield to dimethyl etehr (DME). Process simulation was carried out by ChemCAD software, and it was particularly focused on the effect of process conditions of both water gas shift and CO2 absorption by Selexol(R) on the syngas composition, with a direct influence on DME productivity. The final best flowsheet and the best process conditions were evaluated in terms of CO2 equivalent emissions. Results show direct DME synthesis global yield was higher without the WGS section and with a carbon capture equal to 85%. The final environmental impact was found equal to -113 kgCO(2)/GJ, demonstrating that DME synthesis from digestate may be considered as a suitable strategy for carbon dioxide recycling.
2021
carbon footprint
digestate
dimethyl ether
gasification
process simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/350278
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact