Climate change is a significant problem that many countries are currently facing, and green roofs (GRs) are one of the suitable choices to confront it and decrease its impacts. The advantages of GRs are numerous, such as stormwater management, thermal need reduction, runoff quality, and life quality improvement. However, there are some limitations, including the weight, limits in water retention, irrigation in the drought period, suitability of harvested water for building usages, installation on sloped roofs, and high cost. Therefore, developing a novel system and design for GRs with higher efficiency and fewer negative points seems necessary and is the main scope of this research. In this regard, a novel multipurpose self-irrigated green roof with an innovative drainage layer combined with specific multilayer filters has been developed. The application of the proposed system in terms of water retention capacity, water storage volume, runoff treatment performance, irrigation system, drainage layer, application of the harvested water for domestic purposes, and some other aspects has been analyzed and compared with the conventional systems with a focus on extensive green roofs. The results demonstrate that this novel green roof would have many advantages including less weight due to the replacement of the gravel drainage layer with a pipeline network for water storage, higher water retention capacity due to the specific design, higher impacts on runoff treatment due to the existence of multilayer filters that can be changed periodically, easier installation on flat and sloped roofs, the possibility of using the collected rainfall for domestic use, and fewer irrigation water demands due to the sub-surface self-irrigation system.

A Novel Multipurpose Self-Irrigated Green Roof with Innovative Drainage Layer

Pirouz B.
;
Palermo S. A.
;
Becciu G.;Piro P.;Turco M.
2023-01-01

Abstract

Climate change is a significant problem that many countries are currently facing, and green roofs (GRs) are one of the suitable choices to confront it and decrease its impacts. The advantages of GRs are numerous, such as stormwater management, thermal need reduction, runoff quality, and life quality improvement. However, there are some limitations, including the weight, limits in water retention, irrigation in the drought period, suitability of harvested water for building usages, installation on sloped roofs, and high cost. Therefore, developing a novel system and design for GRs with higher efficiency and fewer negative points seems necessary and is the main scope of this research. In this regard, a novel multipurpose self-irrigated green roof with an innovative drainage layer combined with specific multilayer filters has been developed. The application of the proposed system in terms of water retention capacity, water storage volume, runoff treatment performance, irrigation system, drainage layer, application of the harvested water for domestic purposes, and some other aspects has been analyzed and compared with the conventional systems with a focus on extensive green roofs. The results demonstrate that this novel green roof would have many advantages including less weight due to the replacement of the gravel drainage layer with a pipeline network for water storage, higher water retention capacity due to the specific design, higher impacts on runoff treatment due to the existence of multilayer filters that can be changed periodically, easier installation on flat and sloped roofs, the possibility of using the collected rainfall for domestic use, and fewer irrigation water demands due to the sub-surface self-irrigation system.
2023
NBSs
self-irrigation
green roof
sustainable development
capillarity
water filters
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/351459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact