The combination of well-defined Fe3+ isolated single-metal atoms and Ag2 subnanometer metal clusters within the channels of a metal-organic framework (MOF) is reported and characterized by single-crystal X-ray diffraction for the first time. The resulting hybrid material, with the formula [Ag02(Ag0)1.34FeIII0.66]@ NaI2{NiII4[CuII2(Me3mpba)2]3}center dot 63H2O (Fe3+Ag02@MOF), is capable of catalyzing the unprecedented direct conversion of styrene to phenylacetylene in one pot. In particular, Fe3+Ag02@MOF-which can easily be obtained in a gram scale-exhibits superior catalytic activity for the TEMPO-free oxidative cross-coupling of styrenes with phenyl sulfone to give vinyl sulfones in yields up to >99%, which are ultimately transformed, in situ, to the corresponding phenylacetylene product. The results presented here constitute a paradigmatic example of how the synthesis of different metal species in well-defined solid catalysts, combined with speciation of the true metal catalyst of an organic reaction in solution, allows the design of a new challenging reaction.

MOF-Triggered Synthesis of Subnanometer Ag02 Clusters and Fe3+ Single Atoms: Heterogenization Led to Efficient and Synergetic One-Pot Catalytic Reactions

Armentano, Donatella
;
2023-01-01

Abstract

The combination of well-defined Fe3+ isolated single-metal atoms and Ag2 subnanometer metal clusters within the channels of a metal-organic framework (MOF) is reported and characterized by single-crystal X-ray diffraction for the first time. The resulting hybrid material, with the formula [Ag02(Ag0)1.34FeIII0.66]@ NaI2{NiII4[CuII2(Me3mpba)2]3}center dot 63H2O (Fe3+Ag02@MOF), is capable of catalyzing the unprecedented direct conversion of styrene to phenylacetylene in one pot. In particular, Fe3+Ag02@MOF-which can easily be obtained in a gram scale-exhibits superior catalytic activity for the TEMPO-free oxidative cross-coupling of styrenes with phenyl sulfone to give vinyl sulfones in yields up to >99%, which are ultimately transformed, in situ, to the corresponding phenylacetylene product. The results presented here constitute a paradigmatic example of how the synthesis of different metal species in well-defined solid catalysts, combined with speciation of the true metal catalyst of an organic reaction in solution, allows the design of a new challenging reaction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/352077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact