Photocatalytic membrane reactors (PMRs) have been found to be very effective in the removal of organic pollutants (particularly recalcitrant compounds) from wastewater because they allow for the mineralization of organic pollutants to innocuous by-products, thus achieving highquality treated water. Owing to the very high volumes of water involved, treated sewage wastewater could be reused if a very efficient tertiary stage, like a PMR, can be foreseen. In this review, the two main PMR configurations (photocatalytic membranes and slurry PMRs) were analyzed as requirements of a tertiary treatment of sewage wastewater considering six design and operational parameters of such plants: (i) continuous wastewater flow rate from the secondary stage; (ii) the selfcontrol of the photodegradation rate related to wastewater chemical–physical parameters; (iii) ability to handle variations of wastewater concentration and flow rate; (iv) the control of the quality of treated wastewater; (v) low plant footprint; and (vi) easy maintenance. In this analysis, some characteristics of photocatalysis (which involves three phases: solid (the photocatalyst), liquid (the wastewater), and gas (oxygen or air)) and those of membranes (they can be produced using different materials and configurations, different processes (pressure-driven or not pressure-driven), etc.) were considered. The obtained results show that slurry PMRs seem more suitable than photocatalytic membranes for such applications. We believe this review can trigger a shift in research from the laboratory to industry in using photocatalytic membrane reactors.

Which Configuration of Photocatalytic Membrane Reactors Has a Major Potential to Be Used at an Industrial Level in Tertiary Sewage Wastewater Treatment?

Molinari, Raffaele;Severino, Angela;Lavorato, Cristina;Argurio, Pietro
2023-01-01

Abstract

Photocatalytic membrane reactors (PMRs) have been found to be very effective in the removal of organic pollutants (particularly recalcitrant compounds) from wastewater because they allow for the mineralization of organic pollutants to innocuous by-products, thus achieving highquality treated water. Owing to the very high volumes of water involved, treated sewage wastewater could be reused if a very efficient tertiary stage, like a PMR, can be foreseen. In this review, the two main PMR configurations (photocatalytic membranes and slurry PMRs) were analyzed as requirements of a tertiary treatment of sewage wastewater considering six design and operational parameters of such plants: (i) continuous wastewater flow rate from the secondary stage; (ii) the selfcontrol of the photodegradation rate related to wastewater chemical–physical parameters; (iii) ability to handle variations of wastewater concentration and flow rate; (iv) the control of the quality of treated wastewater; (v) low plant footprint; and (vi) easy maintenance. In this analysis, some characteristics of photocatalysis (which involves three phases: solid (the photocatalyst), liquid (the wastewater), and gas (oxygen or air)) and those of membranes (they can be produced using different materials and configurations, different processes (pressure-driven or not pressure-driven), etc.) were considered. The obtained results show that slurry PMRs seem more suitable than photocatalytic membranes for such applications. We believe this review can trigger a shift in research from the laboratory to industry in using photocatalytic membrane reactors.
2023
tertiary sewage wastewater treatment; photocatalytic membrane reactors; water reuse; heterogeneous photocatalysis; recalcitrant pollutants
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/355697
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact