Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease affecting the central nervous system. One of its manifestations concerns impaired speech, also known as dysarthria. In many cases, a proper speech evaluation can play an important role in the diagnosis of MS. The identification of abnormal voice patterns can provide valid support for a physician in the diagnosing and monitoring of this neurological disease. In this paper, we present a method for vocal signal analysis in patients affected by MS. The goal is to identify the dysarthria in MS patients to perform an early diagnosis of the disease and to monitor its progress. The proposed method provides the acquisition and analysis of vocal signals, aiming to perform feature extraction and to identify relevant patterns useful to impaired speech associated with MS. This method integrates two well-known methodologies, acoustic analysis and vowel metric methodology, to better define pathological compared to healthy voices. As a result, this method provides patterns that could be useful indicators for physicians in identifying patients affected by MS. Moreover, the proposed procedure could be a valid support in early diagnosis as well as in monitoring treatment success, thus improving a patient’s life quality.

On the use of voice signals for studying sclerosis disease

Tradigo G.;Veltri P.
2017-01-01

Abstract

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease affecting the central nervous system. One of its manifestations concerns impaired speech, also known as dysarthria. In many cases, a proper speech evaluation can play an important role in the diagnosis of MS. The identification of abnormal voice patterns can provide valid support for a physician in the diagnosing and monitoring of this neurological disease. In this paper, we present a method for vocal signal analysis in patients affected by MS. The goal is to identify the dysarthria in MS patients to perform an early diagnosis of the disease and to monitor its progress. The proposed method provides the acquisition and analysis of vocal signals, aiming to perform feature extraction and to identify relevant patterns useful to impaired speech associated with MS. This method integrates two well-known methodologies, acoustic analysis and vowel metric methodology, to better define pathological compared to healthy voices. As a result, this method provides patterns that could be useful indicators for physicians in identifying patients affected by MS. Moreover, the proposed procedure could be a valid support in early diagnosis as well as in monitoring treatment success, thus improving a patient’s life quality.
2017
Acoustic analysis
Multiple sclerosis
Vocal signal analysis
Vowel metric
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/356998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact