The purpose of this article is to expound recovery of low-grade heat deriving from cooling data center electronics, in order to sustain a thermodynamic cycle of the Rankine type, using cryogenic nitrogen as the working fluid. A novel conception of an energy plant is proposed and considered where these resources are available. The evaporator, built in a closed and thermally insulated vessel, is the key component. Liquid nitrogen is evaporated by means of an immersed serpentine, which provides for thermal power and produces pressurized gas. A supplementary reservoir acts as superheater, as well as buffer. The plant is completed with a turbo-expander that generates power and a pump to recirculate the fluid. A thermodynamic model is developed. A dimensioning procedure for all the subsystems is reported, while a verification analysis is made to detect the maximum pressure that can be exerted. Hence, an in-depth parametric analysis is made for two-plant layout scenarios, based on the presence (1) and absence (2) of the supplementary tank. The simulations are aimed at determining all the operating parameters of the plant, as well as the performance. The results show that pressure is beneficial for performance, presenting scenario 1 as better than scenario 2. The maximum nitrogen pressurization is 12 bar, which corresponds to an electric efficiency of 31.5%, under a thermal supply of 2.79 kW per 1 kW of net electric power produced.

Parametric Analysis and Design of a Power Plant to Recover Low-Grade Heat From Data Center Electronics by Using Liquid Nitrogen

Orlando Corigliano
;
Gaetano Florio;Petronilla Fragiacomo
2023-01-01

Abstract

The purpose of this article is to expound recovery of low-grade heat deriving from cooling data center electronics, in order to sustain a thermodynamic cycle of the Rankine type, using cryogenic nitrogen as the working fluid. A novel conception of an energy plant is proposed and considered where these resources are available. The evaporator, built in a closed and thermally insulated vessel, is the key component. Liquid nitrogen is evaporated by means of an immersed serpentine, which provides for thermal power and produces pressurized gas. A supplementary reservoir acts as superheater, as well as buffer. The plant is completed with a turbo-expander that generates power and a pump to recirculate the fluid. A thermodynamic model is developed. A dimensioning procedure for all the subsystems is reported, while a verification analysis is made to detect the maximum pressure that can be exerted. Hence, an in-depth parametric analysis is made for two-plant layout scenarios, based on the presence (1) and absence (2) of the supplementary tank. The simulations are aimed at determining all the operating parameters of the plant, as well as the performance. The results show that pressure is beneficial for performance, presenting scenario 1 as better than scenario 2. The maximum nitrogen pressurization is 12 bar, which corresponds to an electric efficiency of 31.5%, under a thermal supply of 2.79 kW per 1 kW of net electric power produced.
2023
liquid nitrogen, energy, cryogenic energy storage, parametric analysis, low-grade heat recovery, data center, alternative energy sources, energy conversion/systems, energy storage systems, energy systems analysis, heat energy generation/storage/transfer, renewable energy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/357757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact