Telomeres are structures at the ends of eukaryotic chromosomes that help maintain genomic stability. During aging, telomere length gradually shortens, producing short telomeres, which are markers of premature cellular senescence. This may contribute to age-related diseases, including Alzheimer’s disease (AD), and based on this, several studies have hypothesized that telomere shortening may characterize AD. Current research, however, has been inconclusive regarding the direction of the association between leukocyte telomere length (LTL) and disease risk. We assessed the association between LTL and AD in a retrospective case–control study of a sample of 255 unrelated patients with late-onset AD (LOAD), including 120 sporadic cases and 135 with positive family history for LOAD, and a group of 279 cognitively healthy unrelated controls, who were all from Calabria, a southern Italian region. Following regression analysis, telomeres were found significantly shorter in LOAD cases than in controls (48% and 41% decrease for sporadic and familial cases, respectively; p < 0.001 for both). Interestingly, LTL was associated with disease risk independently of the presence of conventional risk factors (e.g., age, sex, MMSE scores, and the presence of the APOE-ε4 allele). Altogether, our findings lend support to the notion that LTL shortening may be an indicator of the pathogenesis of LOAD.

The Shortening of Leukocyte Telomere Length Contributes to Alzheimer’s Disease: Further Evidence from Late-Onset Familial and Sporadic Cases

Paolina Crocco
Data Curation
;
Francesco De Rango
Formal Analysis
;
Serena Dato
Writing – Review & Editing
;
Rossella La Grotta
Methodology
;
Raffaele Maletta
Writing – Review & Editing
;
Giuseppe Passarino
Writing – Review & Editing
;
Giuseppina Rose
Writing – Original Draft Preparation
2023-01-01

Abstract

Telomeres are structures at the ends of eukaryotic chromosomes that help maintain genomic stability. During aging, telomere length gradually shortens, producing short telomeres, which are markers of premature cellular senescence. This may contribute to age-related diseases, including Alzheimer’s disease (AD), and based on this, several studies have hypothesized that telomere shortening may characterize AD. Current research, however, has been inconclusive regarding the direction of the association between leukocyte telomere length (LTL) and disease risk. We assessed the association between LTL and AD in a retrospective case–control study of a sample of 255 unrelated patients with late-onset AD (LOAD), including 120 sporadic cases and 135 with positive family history for LOAD, and a group of 279 cognitively healthy unrelated controls, who were all from Calabria, a southern Italian region. Following regression analysis, telomeres were found significantly shorter in LOAD cases than in controls (48% and 41% decrease for sporadic and familial cases, respectively; p < 0.001 for both). Interestingly, LTL was associated with disease risk independently of the presence of conventional risk factors (e.g., age, sex, MMSE scores, and the presence of the APOE-ε4 allele). Altogether, our findings lend support to the notion that LTL shortening may be an indicator of the pathogenesis of LOAD.
2023
telomere length; telomeres; Alzheimer’s disease; late-onset AD; aging; neurodegeneration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/357857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact