One of the reason that suggests to use COGARCH models to fit financial log-return data is due to the fact that they are able to capture the so called stylized facts observed in real data: uncorrelated log-returns but correlated absolute log-return, time varying volatility, conditional heteroscedasticity, cluster in volatility, heavy tailed and asymmetric unconditional distributions, leverage effects. The aims of this paper is to fit the COGARCH models to a real financial data set, estimate the parameters of the models via the prediction based estimating functions and to look at the performance of these estimates.

Cogarch models: A statistical application

Negri, Ilia;
2017-01-01

Abstract

One of the reason that suggests to use COGARCH models to fit financial log-return data is due to the fact that they are able to capture the so called stylized facts observed in real data: uncorrelated log-returns but correlated absolute log-return, time varying volatility, conditional heteroscedasticity, cluster in volatility, heavy tailed and asymmetric unconditional distributions, leverage effects. The aims of this paper is to fit the COGARCH models to a real financial data set, estimate the parameters of the models via the prediction based estimating functions and to look at the performance of these estimates.
2017
COGARCH models
Prediction based estimating function
Statistical and Nonlinear Physics
Statistics and Probability
Statistics
Probability and Uncertainty
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/359186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact