Multi-step prediction using high frequency environmental data is considered. The complex dynamics of ground ozone often requires models involving covariates, multiple frequency periodicities, long memory, nonlinearity and heteroscedasticity. For these reasons parametric models, which include seasonal fractionally integrated components, self-exciting threshold autoregressive components, covariates and autoregressive conditionally heteroscedastic errors with heavy tails, have been recently introduced. Here, to obtain an h step ahead forecast for these models we use a Monte Carlo approach. The performance of the forecast is evaluated on different nonlinear models comparing some statistical indices with respect to the prediction horizon. As an application of this method, the forecast precision of a 2 year hourly ozone data set coming from an air traffic pollution station located in Bergamo, Italy, is analyzed.
Multi step forecasting for nonlinear models of high frequency ground ozone data: a Monte Carlo approach
NEGRI I;
2002-01-01
Abstract
Multi-step prediction using high frequency environmental data is considered. The complex dynamics of ground ozone often requires models involving covariates, multiple frequency periodicities, long memory, nonlinearity and heteroscedasticity. For these reasons parametric models, which include seasonal fractionally integrated components, self-exciting threshold autoregressive components, covariates and autoregressive conditionally heteroscedastic errors with heavy tails, have been recently introduced. Here, to obtain an h step ahead forecast for these models we use a Monte Carlo approach. The performance of the forecast is evaluated on different nonlinear models comparing some statistical indices with respect to the prediction horizon. As an application of this method, the forecast precision of a 2 year hourly ozone data set coming from an air traffic pollution station located in Bergamo, Italy, is analyzed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.