We consider the problem of the estimation of the invariant distribution function of an ergodic diffusion process when the drift coefficient is unknown. The empirical distribution function is a natural estimator which is unbiased, uniformly consistent and efficient in different metrics. Here we study the properties of optimality for another kind of estimator recently proposed. We consider a class of unbiased estimators and we show that they are also efficient in the sense that their asymptotic risk, defined as the integrated mean square error, attains the same asymptotic minimax lower bound of the empirical distribution function.

Efficiency of a Class of Unbiased Estimators for the Invariant Distribution Function of a Diffusion Process

Negri, Ilia
2010-01-01

Abstract

We consider the problem of the estimation of the invariant distribution function of an ergodic diffusion process when the drift coefficient is unknown. The empirical distribution function is a natural estimator which is unbiased, uniformly consistent and efficient in different metrics. Here we study the properties of optimality for another kind of estimator recently proposed. We consider a class of unbiased estimators and we show that they are also efficient in the sense that their asymptotic risk, defined as the integrated mean square error, attains the same asymptotic minimax lower bound of the empirical distribution function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/359203
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact