The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. This description has been corroborated by a series of experiments by different groups. However, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.

On spatial beam self-cleaning from the perspective of optical wave thermalization in multimode graded-index fibers

Ferraro, M;
2023-01-01

Abstract

The input power-induced transformation of the transverse intensity profile at the output of graded-index multimode optical fibers from speckles into a bell-shaped beam sitting on a low intensity background is known as spatial beam self-cleaning. Its remarkable properties are the output beam brightness improvement and robustness to fiber bending and squeezing. These properties permit to overcome the limitations of multimode fibers in terms of low output beam quality, which is very promising for a host of technological applications. In this review, we outline recent progress in the understanding of spatial beam self-cleaning, which can be seen as a state of thermal equilibrium in the complex process of modal four-wave mixing. In other words, the associated nonlinear redistribution of the mode powers which ultimately favors the fundamental mode of the fiber can be described in the framework of statistical mechanics applied to the gas of photons populating the fiber modes. This description has been corroborated by a series of experiments by different groups. However, some open issues still remain, and we offer a perspective for future studies in this emerging and controversial field of research.
2023
Kerr effect
Multimode fibers
Nonlinear optical fibers
Statistical mechanics
Thermodynamics
Graded-index fibers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/360765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact